Using metal complex reduced states to monitor the oxidation of DNA.

نویسندگان

  • Eric D Olmon
  • Michael G Hill
  • Jacqueline K Barton
چکیده

Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)(2)(bpy')](3+) (phi = 9,10-phenanthrenequinone diimine; bpy' = 4-methyl-4'-(butyric acid)-2,2'-bipyridine), [Ir(ppy)(2)(dppz')](+) (ppy = 2-phenylpyridine; dppz' = 6-(dipyrido[3,2-a:2',3'-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)(3)(dppz)(py')](+) (dppz = dipyrido[2,3-a:2',3'-c]phenazine; py' = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yields of the three complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization, Electrochemical and Antimicrobial Studies of N4-Macrocycles of Cobalt(II) and Nickel(II) Metal Ions

The precise analysis of redox chemistry of MN4-based macrocyclic complexes is of great importance because of stabilization of unusual oxidation states of metal ions by macrocyclic ligand and thus have various applications in biochemistry, electrochemistry, electrocatalysis, pharmaceuticals etc. In this work, MN4-macrocyclic complexes of Co (II) and Ni(II) transition metal ...

متن کامل

Synthesis, characterisation and catalytic activity of Schiff base Cu(II) metal complex

This study reports the synthesis of chitosan anchored Schiff base, ([2-oxo-1H-indol-3-ylidene] amino) chitosan and its Cu (II) metal complex. The complex was characterized by elemental analysis, FT-IR Spectrum, thermogravimetry analysis .The crystallinity of the compound was analyzed by powder X-ray diffraction technique. The catalytic efficiency of complex was studied in the oxidation of alcoh...

متن کامل

Synthesis, characterisation and catalytic activity of Schiff base Cu(II) metal complex

This study reports the synthesis of chitosan anchored Schiff base, ([2-oxo-1H-indol-3-ylidene] amino) chitosan and its Cu (II) metal complex. The complex was characterized by elemental analysis, FT-IR Spectrum, thermogravimetry analysis .The crystallinity of the compound was analyzed by powder X-ray diffraction technique. The catalytic efficiency of complex was studied in the oxidation of alcoh...

متن کامل

Synthesis, characterization and selective oxidation using a new copper (II) Schiff base complex derived from Alanine and 4-chloro3- formyl coumarin

A novel Schiff-base ligand (L: 2-[(4-chloro-2-oxo-2H-chromen-3-ylmethylene)-amino] propionic acid) was prepared from the reaction of 4-chloro3-formylcoumarin and alanine amino acid. Copper (II) complex was synthesized from the reaction of the ligand with Cu (OAc)2. H2O in ethanol. The ligand and its metal complex were characterized by elemental analysis (CHN), ICP, thermal analysis (TGA), Fouri...

متن کامل

The role of plant antioxidants in the synthesis of metal nanoparticles

In recent years, the number of reports of nanoparticle production using green methods has increased exponentially. Green methods of nanoparticle production are based on oxidation and reduction reactions in which metal ions are reduced to nanoparticles with the help of compounds in living organisms or their extracts, including antioxidants. The presence of biomolecules, including antioxidants in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inorganic chemistry

دوره 50 23  شماره 

صفحات  -

تاریخ انتشار 2011